НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра алгебры и математической логики

В.А.ЧУРКИН

ЗАДАНИЯ ПО АЛГЕБРЕ для 1 курса ММ Φ

Каждое из шести заданий включает около 15 задач, в основном, теоретического характера и рассчитано примерно на месяц самостоятельной работы. Отчет письменный или, по желанию преподавателя, устный. Каждая задача оценивается в 10 баллов, оценка "отлично" — при наборе 80% общей суммы баллов задания, "хорошо" — 60%, "удовлетворительно" — 40%.

Утверждения, не содержащие прямое указание к действию, необходимо доказать, либо опровергнуть.

Задание 1

Отображения, группы, кольца, поля, подстановки, матрицы

- 1. Построить все графы отображений трехэлементного множества в себя и разбить их на классы, состоящие из изоморфных графов.
- 2. Доказать, что множество алгебраических структур вида (\mathbb{R} ; $x \mapsto ax + b$) разбивается на 5 классов, состоящих из изоморфных структур, а множество структур вида (\mathbb{R} ; $x \mapsto ax^2 + bx + c$) на бесконечно много классов.
- 3. Найти все непрерывные изоморфизмы между группой вещественных чисел по сложению и группой положительных вещественных чисел по умножению.
- 4. Пусть p простое число, $R_p = \{a + b\sqrt{p} \mid a, b \in \mathbb{Z}\}$. Доказать, что R_p кольцо относительно сложения и умножения чисел. Будет ли R_p полем? Изоморфны ли кольца R_2 и R_3 ?
- 5. Всякий автоморфизм поля \mathbb{Z}_p вычетов по простому модулю p, поля \mathbb{Q} рациональных чисел или поля \mathbb{R} вещественных чисел является тождественным. Существует только два непрерывных автоморфизма поля \mathbb{C} комплексных чисел.
- 6. Комплексное число (3+4i)/5 не является корнем из единицы, хотя по модулю оно равно единице.
- 7. Всякая четная подстановка $n \geqslant 3$ элементов разлагается в произведение циклов длины 3 и даже циклов (123), (124), ..., (12n).
- 8. Натуральное число m с каноническим разложением на простые множители $p_1^{k_1}...p_s^{k_s}$ является наименьшим периодом некоторой подстановки n элементов тогда и только тогда, когда $p_1^{k_1}+...+p_s^{k_s}\leqslant n$.
- 9. Отображения f и f' множества X в себя назовем *подобными*, если существует такое взаимно однозначное отображение g множества X на себя, что $f' = g \circ f \circ g^{-1}$. Какие из отображений $x \mapsto x^2 \pm 1$, $x \mapsto x^2 \pm 2$, кольца \mathbb{Z}_6 в себя подобны? Сколько отображений \mathbb{Z}_6 в себя перестановочно с отображением $f(x) = x^2 1$ относительно композиции отображений?
 - 10. Всякая группа порядка n изоморфна некоторой подгруппе группы подстановок S_n .
- 11. Центром кольца R называется множество $\{a \in R \mid ax = xa \text{ для всех } x \in R\}$. Доказать, что центр кольца матриц $M_n(K)$ над полем K состоит из скалярных матриц $Diag(c,c,...,c), c \in K$, и изоморфен K.
 - 12. Проверить тождества для следа матриц над полем:
 - a) $\operatorname{tr} AB = \operatorname{tr} BA$;
 - б) $A^2 (\operatorname{tr} A)A + (\det A)E = 0$, если A матрица порядка 2;
 - в) $\operatorname{tr} AB + \operatorname{tr} AB^{-1} = \operatorname{tr} A \cdot \operatorname{tr} B$, если $\det A = \det B = 1$, A, B матрицы порядка 2.
- 13. Элементы a кольца R называется negum denumenem нуля, если найдется такой элемент b из R, что ab=0, $a\neq 0$, $b\neq 0$. Аналогично определяется правый делитель нуля. Доказать, что в кольце матриц над полем обратимая матрица не является делителем нуля, а необратимая и левый, и правый делитель нуля.
- 14. Определитель матрицы порядка 3 над полем вещественных чисел по модулю равен объему параллелепипеда, три направляющих ребра которого в прямоугольной системе координат задаются строками матрицы.
- 15. Найти наибольшее значение определителя матрицы порядка 3, составленной из чисел 1 и -1.

- 16. Матрица A называется *кососимметричной*, если $A^{\top} = -A$. Доказать: а) определитель кососимметричной матрицы нечетного порядка равен нулю; б) определитель кососимметричной матрицы четного порядка не изменится, если ко всем ее элементам прибавить одно и то же число.
- 17. Исследовать замкнутость каждого из следующих множеств матриц специальные, бесследные, ортогональные, унитарные, симметричные, эрмитовы, кососимметричные, косоэрмитовы относительно операций сложения, умножения на скаляр, умножения матриц, обращения, коммутирования [A,B] = AB BA, антикоммутирования $A \circ B = AB + BA$ и оформить результаты в виде таблицы.

Проверить тождества колец Ли: [A, A] = 0, [[A, B], C] + [[B, C], A] + [[C, A], B] = 0, колец Йордана: $A \circ B = B \circ A$, $((A \circ A) \circ B) \circ A = (A \circ A) \circ (B \circ A)$.

Какие алгебраические структуры получаются в итоге?

Задание 2

Векторы, матрицы, линейные уравнения

- 1. Доказать, что функции 1, $\cos t$, $\cos 2t$, ..., $\cos nt$ линейно независимы в пространстве всех вещественнозначных функций на вещественной прямой.
- 2. Показать, что порядок q конечного поля всегда является степенью простого числа с натуральным показателем. Сколько базисов содержит векторное пространство размерности n над полем порядка q? Сколько там подпространств размерности k?
- 3. Доказать, что любой базис конечномерного векторного пространства можно преобразовать в любой другой базис пространства с помощью элементарных преобразований.
- 4. Для всякой $s \times n$ -матрицы A ранга r над полем существует "скелетное" разложение A = XY , где $X-s \times r$ -матрица, $Y-r \times n$ -матрица. Найти скелетное разложение вещественных матриц

$$\left(\begin{array}{cc} 4 & -6 \\ 6 & -9 \end{array}\right), \left(\begin{array}{ccc} 1 & -4 & 7 \\ 1 & -2 & 5 \\ -2 & 2 & -8 \end{array}\right).$$

5. Установить нижнюю оценку ранга произведения матриц над полем:

$$\operatorname{rk}(AB) \geqslant \operatorname{rk}(A) + \operatorname{rk}(B) - n,$$

где n — число столбцов матрицы A.

- 6. В каждой (косо)симметрической матрице найдется главный базисный минор. Если в поле $1+1\neq 0$, то ранг кососимметричной матрицы над полем всегда четен. Определитель целочисленной кососимметричной матрицы является квадратом целого числа.
- 7. Доказать, что матрицы AB-E и BA-E либо обе обратимы, либо обе необратимы. Здесь A и B матрицы порядка n над полем.

- 8. Пусть U пространство решений однородной системы линейных уравнений от n переменных над полем K, а L линейная оболочка строк матрицы системы. Доказать, что $K^n = L \oplus U$ для любой такой системы, если и только если уравнение $x_1^2 + \ldots + x_n^2 = 0$ имеет в поле K одно решение нулевое. Рассмотреть случаи $K = \mathbb{R}$, \mathbb{C} , \mathbb{Z}_p .
- 9. Доказать, что для конечномерного векторного пространства над конечным полем число всех подпространств размерности k и число всех подпространств коразмерности k совпадают.
- 10. Если всякое решение системы Ax = 0 над полем K является решением системы Bx = 0 над полем K, то B = CA для некоторой матрицы C над K.
- 11. Найти систему вещественных линейных уравнений, задающих линейное многообразие a+U, где

$$a = (1, 1, -1, -1), \quad U = \langle (1, -1, -1, 1), (1, 2, 1, 3) \rangle.$$

- 12. Доказать, что для совместной системы вещественных линейных уравнений существует единственное решение, принадлежащее линейной оболочке строк матрицы системы.
- 13. Конечномерное векторное пространство над бесконечным полем не может быть объединением конечного числа собственных линейных многообразий. Если линейное многообразие в таком пространстве лежит в объединении конечного числа других линейных многообразий, то оно содержится в одном из этих многообразий.
 - 14. Найти все целочисленные решения системы уравнений

$$\begin{cases} 3x + 5y + 3z = -2, \\ 8x - 3y - 6z = 4, \\ 5x - 8y - 9z = 6. \end{cases}$$

Выделить среди них решения, ближайшие к началу координат.

15. Пусть дана однородная целочисленная система s линейных уравнений от n переменных, n>s, и каждый коэффициент системы по модулю не превосходит M. Доказать, что тогда найдется ненулевое целочисленное решение этой системы в n-мерном кубе $|x_i| \leq 2(nM)^{s/(n-s)}, \ i=1,...,n$.

Задание 3

Алгебра многочленов

- 1. Пусть $f(x)=1+x+x^2+\cdots+x^9$ целочисленный многочлен. Произведение $f(x)^3f(1/x)^3$ очевидно можно разложить по степеням x^k , где $k=0,\ \pm 1,\ \pm 2,\ldots$, с целыми коэффициентами. Доказать, что коэффициент при x^0 равен числу "счастливых" автобусных билетов, в номерах которых сумма первых трёх цифр равна сумме последних трёх цифр.
- 2. Доказать, что функции $T_n(x) = \cos(n \arccos x)$ при $|x| \le 1$ совпадают с многочленами Чебышёва, которые можно вычислить по схеме:

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$, $n \ge 1$.

Найти для них старшие коэффициенты, четность, корни, точки экстремума, экстремальные значения.

- 3. Всякая функция от n переменных $f:K^n\to K$ на конечном поле K реализуется, и даже не одним, многочленом над K от n переменных.
 - 4. Найти все корни уравнения $(z-1)^n = (z+1)^n$, а также сумму их квадратов.
- 5. Пусть $f(x) \in \mathbb{R}[x]$ и $f(x) \geqslant 0$ для всех x из \mathbb{R} . Доказать, что тогда существуют такие вещественные многочлены g(x) и h(x), что $f(x) = g(x)^2 + h(x)^2$.
- 6. В алгебре многочленов над любым полем существует бесконечно много неразложимых элементов.
 - 7. Рациональную дробь $1/(x^{2n}+1), n \ge 1$, разложить на простейшие над $\mathbb C$ и над $\mathbb R$.
- 8. Если $g(x) = \prod_{k=1}^n (x-x_k)$ и корни x_k попарно различны, то верна формула Лагранжа для правильной рациональной дроби:

$$\frac{f(x)}{g(x)} = \sum_{k=1}^{n} \frac{f(x_k)}{g'(x_k)(x - x_k)}.$$

- 9. Найти все неразложимые многочлены степени ≤ 3 от одной переменной над полем из двух элементов. Построить поля из четырех и из восьми элементов. Указать для них таблицы сложения и умножения.
- 10. Разложить на неразложимые множители многочлен $x^{15}-1$ над полем из двух элементов и над полем рациональных чисел.
- 11. Пусть K поле из q элементов и P(n,q) доля многочленов без корней в поле K среди всех многочленов степени n от одной переменной над полем K. Найти P(n,q) и доказать, что $\lim_{q\to\infty}(\lim_{n\to\infty}P(n,q))=1/e\sim0,367$. Таким образом, многочленов большой степени без корней над большим конечным полем примерно 37%.
- 12. Многочлен $x^4 + 1$ неразложим в кольце $\mathbb{Z}[x]$, но разложим в алгебре $\mathbb{Z}_p[x]$ по любому простому модулю p.
- 13. Доказать, что число комплексных корней многочлена f(z), содержащихся внутри контура, на котором f(z) не обращается в нуль, равно деленному на 2π приращению аргумента комплексной переменной w=f(z) при однократном обходе переменной z по контуру против часовой стрелки. Найти число корней многочлена z^7+14z^3+12 в кругах $|z|\leqslant 1$ и $|z|\leqslant 2$.
- 14. Найти размерность пространства однородных многочленов степени k от n переменных.
- 15. Нормированный вещественный многочлен называется ycmoйчивым, если все его корни расположены в левой полуплоскости $Re\ z < 0$. Можно считать, что кратных корней нет. Доказать, что многочлен устойчив, если и только если положительны все его коэффициенты, а также все коэффициенты нормированного многочлена, корнями которого являются всевозможные суммы различных корней исходного многочлена. При каких условиях на коэффициенты устойчив кубический многочлен?
 - 16. Решить над полем комплексных чисел систему уравнений

$$\begin{cases} x+y+z=3, \\ x^2+y^2+z^2=3, \\ x^3+y^3+z^3=6. \end{cases}$$

- 17. Доказать, что $\mathbb{R}[x,y]/\langle x^2+y^2-1\rangle \simeq \mathbb{R}[\cos t, \sin t]$.
- 18. Каждый идеал в кольце тригонометрических многочленов $\mathbb{R}[\cos t, \sin t]$ конечнопорожден.
- 19. Найти базис-делитель идеала $\langle x^3 + xy + z, 3x^2 + y \rangle$ в алгебре $\mathbb{Q}[x,y,z]$ относительно лексикографического порядка x>y>z.
 - 20. Решить над полем комплексных чисел систему уравнений

$$\begin{cases} x^2 + y + z = 1, \\ x + y^2 + z = 1, \\ x + y + z^2 = 1. \end{cases}$$

Задание 4

Линейные операторы векторных пространств

- 1. Линейный оператор векторного пространства размерности $\geqslant 2$ имеет в некотором базисе элементарную матрицу—трансвекцию тогда и только тогда, когда определитель оператора равен 1, а подпространство неподвижных векторов имеет коразмерность 1.
- 2. Какие отношения включения возможны между подпространствами $\operatorname{Ker} AB$ и $\operatorname{Ker} A+\operatorname{Ker} B$ для линейных операторов A и B?
- 3. Ядро линейного отображения $\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2$ пространства H_p однородных вещественных многочленов степени p от переменных x,y в пространство H_{p-2} является линейной оболочкой "гармонических" многочленов $u_p(x,y)$ и $v_p(x,y)$, определяемых тождеством $u_p(x,y)+i\,v_p(x,y)=(x+iy)^p$, где $i^2=-1$.
- 4. Числа Фибоначчи задаются правилом: $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$ при $n \geqslant 1$. Пусть $u_n = (F_{n+1}, F_n)^{\top}$. Выразить u_n через u_{n-1} в матричном виде $u_n = Au_{n-1}$, найти собственные значения и собственные векторы для A и доказать, что F_n ближайшее целое к числу $\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^n$.
- 5. Найти долю в объеме шара $x^2+y^2+z^2+t^2\leqslant r^2$ из \mathbb{R}^4 множества точек (x,y,z,t), для которых матрица $\begin{pmatrix} x & y \\ z & t \end{pmatrix}$ подобна вещественной диагональной.
- 6. Доказать, что в n-мерном комплексном пространстве V для всякого линейного оператора существует "флаг" инвариантных подпространств

$$0 = U_0 \subset U_1 \subset U_2 \subset ... \subset U_n = V$$
, dim $U_k = k$,

более того, в такой флаг можно включить любое наперед заданное инвариантное подпространство из V. (На матричном языке это равносильно теореме Шура: всякая квадратная комплексная матрица подобна треугольной, причем матрицу перехода можно даже выбрать унитарной.) Что можно утверждать для вещественных пространств?

- 7. Коммутирующие линейные операторы в конечномерном комплексном пространстве всегда имеют общий собственный вектор и даже флаг подпространств, инвариантных относительно всех операторов.
- 8. Спектры матриц A и B порядка n совпадают тогда и только тогда, когда $\operatorname{tr} A^k = \operatorname{tr} B^k$ при k=1,2,...,n.
- 9. Доказать, что спектры матриц AB и BA всегда совпадают. Здесь A и B- любые матрицы порядка n над полем.
- 10. Построить ядерно-образные разложения и дать геометрическое описание действия линейных операторов A в \mathbb{R}^n , если а) $A^2 = A$, б) $A^2 = E$, в) $A^3 = A$.
- 11. Сколько инвариантных подпространств имеет линейный оператор, если его минимальный многочлен совпадает с характеристическим и все его корни содержатся в поле скаляров?
 - 12. Перечислить все возможные жордановы формы для матрицы A с условием $A^3 = A^2$.
- 13. Доказать, что наборы обратимых жордановых клеток для матриц AB и BA всегда совпадают. Здесь A и B любые матрицы порядка n над полем.
- 14. Всякая матрица, коммутирующая с жордановой клеткой, является многочленом от этой клетки.
 - 15. Решить матричное уравнение AX = XA, где A жорданова форма из двух клеток.
- 16. Найти жорданову форму оператора Δ из задачи 2 в пространстве многочленов степени $\leqslant n$ от переменных x,y.
 - 17. Решить матричное уравнение $X^2 3X = \begin{pmatrix} 1 & -9 \\ 1 & -5 \end{pmatrix}$.

Задание 5

Линейные операторы и квадратичные формы

- 1. Доказать, что планету Земля можно изометрично расположить в n-мерном евклидовом кубике с ребром в 1 см, если n достаточно большое число, например, $n \geqslant 5 \cdot 10^{18}$.
- 2. Пусть любые два из данных k векторов евклидова пространства V образуют тупой угол. Доказать, что $k \leqslant 1 + \dim V$.
- 3. Найти расстояние от функции $(\cos t)^{k+1}$ до линейной оболочки V функций $1, \cos t, \sin t, \ldots, \cos kt, \sin kt$ в пространстве вещественных непрерывных функций на отрезке $[-\pi, \pi]$ со скалярным произведением

$$(f, g) = \int_{-\pi}^{\pi} f(t)g(t) dt.$$

4. Всякая квадратная невырожденная комплексная матрица A имеет единственное разложение Грама вида A=QR, где Q — унитарная, а R — верхнетреугольная матрица с вещественной положительной главной диагональю.

- 5. Найти операторы, сопряженные с операторами $L_A: X \mapsto AX$ и $C_A: X \mapsto AXA^{-1}$ относительно скалярного произведения (X,Y)= tr X^*Y на пространстве матриц $M_n(\mathbb{C})$. Здесь A данная (обратимая) комплексная матрица порядка n, а X^* получается из матрицы X комплексным сопряжением элементов и транспонированием.
- 6. Найти оператор, сопряженный с оператором дифференцирования D на пространстве V гладких функций из задачи 3. Найти канонические базис и матрицу D и дать геометрическое описание действия D на V.
- 7. Всякая симметричная (эрмитова) положительно определенная матрица является матрицей Грама подходящей системы векторов.
- 8. Если A ортогональная матрица порядка n, то для её характеристического многочлена выполнено следующее условие симметрии

$$\chi_A(t) = (-t)^n \chi_A(1/t).$$

- 9. При каких значениях вещественных параметров p и q матрица $\begin{pmatrix} p & pq-q \\ 1 & q \end{pmatrix}$ подобна ортогональной?
- 10. Каково максимальное число линейно независимых вещественных попарно коммутирующих а) симметричных матриц порядка n, б) кососимметричных матриц порядка n, в) произвольных матриц порядка n?
- 11. Доказать, что экспонента отображает алгебру косоэрмитовых матриц нa группу унитарных, а алгебру кососимметричных матриц na группу специальных ортогональных.
- 12. а) Дробно-линейное преобразование комплексных чисел $z \mapsto (1-z)/(1+z)$ мнимую ось $\mathbb{R}i$ отображает взаимнооднозначно на единичную окружность |z|=1 с выколотой точкой -1 и совпадает по форме со своим обратным.
- б) Преобразование Кэли $X \mapsto (E-X)(E+X)^{-1}$ алгебру кососимметричных операторов взаимнооднозначно отображает на множество ортогональных операторов без точки -1 в спектре и совпадает по форме со своим обратным.
- 13. Для матрицы $A_{\varepsilon} = E_{12} + E_{23} + ... + E_{n-1,n} + \varepsilon E_{n1}$ рассмотреть изменение спектра и сингулярных чисел при возмущении $A_0 \to A_{\varepsilon}$, если n = 10, $\varepsilon = 10^{-10}$.
- 14. Найти угол и раствор между гранями $A_0A_1A_2$ и $A_0A_3A_4A_5$ правильного пятимерного симплекса $A_0A_1A_2A_3A_4A_5$, используя сингулярные числа.
 - 15. Какие линейные операторы *п*-мерного евклидова пространства
 - а) сохраняют площади параллелограммов,
 - б) сохраняют k-мерный объем при данном k, где $1 \le k \le n$,
 - в) сохраняют углы между векторами?
- 16. Пусть $A=(a_{ij})$ комплексная матрица со спектром $\lambda_1,\dots,\lambda_n$. Доказать, что каждое из следующих условий равносильно нормальности A: а) $\sum_{i,j}|a_{ij}|^2=\sum_i|\lambda_i|^2,$ б) A^* многочлен от A.
- 17. Найти сигнатуру следующей симметричной билинейной формы на пространстве вещественных многочленов от одной переменной степени ≤ 1:

$$\varphi(f, g) = \int_0^c (t - 1)f(t)g(t)dt.$$

18. Множество $\{(x, Ax) : x \in V, \|x\| = 1\}$ является выпуклой оболочкой спектра нормального оператора A в эрмитовом пространстве V. Найти экстремумы и и точки экстремума на сфере $\|x\| = 1$ из \mathbb{R}^3 для вещественной квадратичной формы

$$q(x) = -3x_2^2 + 4x_1x_2 + 10x_1x_3 - 4x_2x_3.$$

- 19. При каких условиях на спектр матрицы вещественной квадратичной формы q(x) от n переменных поверхность с уравнением q(x) = 1, $x \in \mathbb{R}^n$, в пересечении с некоторым подпространством коразмерности 1 образует сферу S^{n-2} ?
- 20. Если пара вещественных квадратичных форм с матрицами $A, B \neq 0$ одновременно канонизируется обратимой заменой переменных, то многочлен $\det(A-tB)$ имеет вещественные корни, однако обратное утверждение неверно.

Задание 6

Линейные группы и алгебры

- 1. Группа SO_2 может рассматриваться как подгруппа группы SO_3 . Отождествить непрерывно множество правых смежных классов SO_3/SO_2 с двумерной сферой S^2 .
- 2. Пусть группа G действует на множестве X и X/G множество орбит. Доказать, что можно отождествить непрерывно X/G и тор (поверхность бублика), если X плоскость, а G группа, порожденная двумя переносами в непараллельных направлениях; X/G и бутылку Клейна, если X плоскость, а G группа, порожденная переносом и скользящей симметрией в непараллельных направлениях.
- 3. Доказать, что группа поворотов правильного тетраэдра изоморфна A_4 , группа поворотов куба или октаэдра изоморфна S_4 , а группа поворотов додекаэдра или икосаэдра изоморфна группе A_5 .
- 4. Доказать, что группа, порожденная двумя отражениями в сторонах угла на евклидовой плоскости, конечна тогда и только тогда, когда угол составляет рациональную долю полного угла.
- 5. Доказать, что группа всех ортогональных операторов евклидова векторного пространства порождается отражениями относительно всевозможных подпространств коразмерности 1, а группа всех изометрий евклидова аффинного пространства отражениями относительно гиперплоскостей.
 - 6. Найти центры групп GL_n , O_n , SO_n , U_n , SU_n .
- 7. Описать алгебраически и геометрически классы сопряженных элементов в группах SU_2 и SO_3 .
 - 8. а) Доказать, что $O_3 \simeq Z_2 \times SO_3$.
- б) Доказать, что группа SU_2 не содержит подгруппы, изоморфной группе SO_3 , и потому не расщепляется в полупрямое произведение групп $\{\pm 1\}$ и SO_3 .

- 9. Вычислить ряд коммутантов и его секции для групп изометрий евклидовой аффинной прямой, плоскости и трехмерного пространства.
- 10. Найти точное представление а) поля порядка 4 матрицами порядка 2 над полем из двух элементов, б) алгебры Ли \mathbb{R}^3 относительно векторного произведения вещественными матрицами порядка 3.
- 11. Вычислить структурные константы ассоциативной алгебры $M_n(K)$ в базисе из матричных единиц E_{ij} , $1 \le i$, $j \le n$, и алгебры Π и so_n вещественных кососимметрических матриц в базисе $C_{ij} = E_{ij} E_{ji}$, где $1 \le i < j \le n$.
- 12. Матричная алгебра $M_n(K)$ над полем K является простой как ассоциативная алгебра, т.е. содержит только тривиальные двусторонние идеалы.
- 13. Алгебра Ли so_3 изоморфна алгебре Ли \mathbb{R}^3 относительно векторного произведения и является простой, т.е. содержит только тривиальные идеалы.
- 14. Доказать, что алгебра Ли $so_3(\mathbb{R})$ не изоморфна алгебре Ли бесследных матриц $sl_2(\mathbb{R})$, но $so_3(\mathbb{C})$ изоморфна $sl_2(\mathbb{C})$.
 - 15. Доказать, что алгебра Ли so_4 изоморфна $so_3 \oplus so_3$.
 - 16. Группа автоморфизмов тела кватернионов изоморфна SO₃.
- 17. Доказать, что $\exp(q) = \cos \|q\| + \sin \|q\| \cdot (q/\|q\|)$ для ненулевого мнимого кватерниона q. Вывести отсюда, что отображение $q \mapsto \exp(q)$ "периодически наворачивает" евклидово пространство \mathbb{R}^3 мнимых кватернионов на сферу $S^3 = \{q \in \mathbb{H} : \|q\| = 1\}$.

УКАЗАНИЯ

- 1.2. а) Используя соответствие $x \leftrightarrow px + q, \ p \neq 0$, показать, что при $a \neq 1$ структура $(\mathbb{R}; x \mapsto ax + b)$ изоморфна $(\mathbb{R}; x \mapsto ax)$. б) Свести к случаю $(\mathbb{R}; x \mapsto x^2 c)$ линейной заменой. Исследовать дерево прообразов точки -c при 1 < c < 2 и заметить, что ближайший обрыв в нем можно сделать сколь угодно далеким, если параметр c близок к 2.
- 1.5. Положительность вещественного числа и, следовательно, линейный порядок на поле вещественных чисел можно выразить через алгебраические операции.
 - 1.6. Предположить противное. Использовать сравнение $(3+4i)^n = 5^n \equiv 0 \pmod{5}$.
 - 1.8. Использовать неравенство $ab \geqslant a+b$ при $a \geqslant 1,\ b \geqslant 1.$
- 1.10. Сопоставить элементу g группы G "правый сдвиг" $\widehat{g}:x\mapsto xg$ на множестве G.
- 1.14. Заметить, что при элементарных преобразованиях строк объем и определитель не изменяются, и в невырожденном случае привести матрицу к диагональному виду.
 - 2.1. Эта система функций линейно эквивалентна системе степеней косинусов.
- 2.2. Кольцо, объемлющее поле, может рассматриваться как векторное пространство над этим полем.
 - 2.5. Использовать разложение матрицы в произведение диагональной и трансвекций.
- 2.6. Найти элементарные преобразования (косо)симметричной матрицы, сохраняющие (косо)симметричность и позволяющие привести матрицу к (почти) диагональному виду.

- 2.13. Использовать индукцию по размерности.
- 2.15. В кубе из \mathbb{R}^n со стороной l число целочисленных точек растет быстрее, чем в кубе из \mathbb{R}^s со стороной al при $l \to \infty$.
 - 3.3. Использовать индукцию по n.
 - $3.9.\ K[x]/\langle p \rangle$ поле, если p неразложим над полем K.
- 3.13. Использовать разложение комплексного многочлена на линейные множители и свойства аргумента комплексного числа.
- 4.3. Продифференцировать обе части тождества, определяющего гармонические многочлены.
 - 4.5. Достаточно разобрать случай корней простой степени из 1.
 - 4.7. $Ker(B \lambda E)$ инвариантно относительно A, если AB = BA.
 - 4.11. Инвариантное подпространство тоже имеет корневое разложение.
- 4.13. Записать действие BA в жордановом базисе пространства относительно BA, а затем применить A.
 - 4.17. Привести правую часть к жордановой форме.
 - 5.3. Использовать задачу 3.2.
- 5.10. Найти общее минимальное инвариантное подпространство и использовать индукцию по размерности пространства.
- 5.14. Отождествить вершины симплекса с "концами" векторов стандартного базиса для $\mathbb{R}^6.$
 - 5.15. Использовать полярное разложение.
- 5.16. а) Сумма квадратов модулей всех элементов матрицы не меняется при сопряжении унитарной матрицей. б) Использовать полиномиальную интерполяцию.
- 5.19. Использовать перемежаемость спектра матрицы квадратичной формы и её сужения на подпространстве.
- 6.3. Рассмотреть индуцированное действие на множестве вершин, диагоналей и вписанных кубов.
 - 6.10. Подобно задаче 1.10, использовать правый сдвиг.
- 6.14. Вычислить структурные константы для sl_2 в "естественном" базисе и применить 6.13.
- 6.15. Базис so_4 с нужными структурными константами можно найти, например, используя разложение группы PSO_4 в прямое произведение.
 - 6.17. Использовать разложение в ряд экспоненты, косинуса и синуса.